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ABSTRACT

A general principle for error estimation is described
which can be applied to different types of partial differential
equations. Particular attention is paid to nonlinear problems.
With a programmed procedure based on this estimation principle,
error bounds are calculated for boundary value problems involving

the differential equation -au + f(x,y,u) = 0.
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1. The Prcblem:

This paper is concerned with a certain type of differential
inequalities which can be used for different purposes. Here we are
mainly interested in the application of such inequalities for error

estimations in partial differential equations.
For illustration, consider the boundary value problem

-0u + f(xl,xz,u) =0 on G,

(1s1)
W= s(xl,xz) on [,

where G 1s a bounded open domain oi' the (xl,x2)-p1ane and T
denotes its boundary. Under appropriate wssumptions on f and the

functions u(xl,xz), v xl,xz), it can be shown that the inequalities

-Mu + f(xl,xz,u)‘g -Av + f(xl,xz,v) on G,
u(x;,xz) £ v(x;,xz) on T, (1.2)
imply u(x;,xz) { v xl,xz) on G=GUT.

We are concerned with such implications for a more general
problem. We consider a problem with n unknown functions ui(x;,...,xm)
(i=1,2,...o0) of m independent variebles. These functions shall be
defined and continuous on the closure G of a bounded open domain G

of the m-dimensional Euclidean space with boundary ['. With the



notations  x= (.0 =(xD), u= (... ,u") = (05 =u(x)

the problem shall consist of p equations

Mlul(x) = ri(x) on B, (321,2,000,p) o (1.3)

Each of these equations is a differential equation of

at most second order, given on some subset Bj < G. Besides
continuity, the functions uk(x) shall have appropriate differenti-
ability properties depending on the special problem. Let R denote

the linear set of all u(x) which have these properties.

Then, under what conditions is the following implication true:

Flul(x) < Pv() on B, (321525 e005p)
. . K (1.4)
(x) < vi(x) on G (k=1,2y000,n)

imply u
for u,veR.

Example 18 The problem (1.l1) can be written in the form (1.3)

using:
Fl[u](x) = -Au + f(xl,xz, u), rl(x) =0, B =G
FPlul(®) =u(x, r3(x)=s(x, £, B,=T.

m=2, n=1, p=2. As R, one may choose the set of all functions
u(x) which are continuous on G and have continuous first and second

derivatives on G.

Often, it 1s of advantage to describe the problem in a shorter

abstract form. Let Mu denote the vector



Muz (Flul,..., Flul) = (Fu))

which is an element of the set S of vectors IJ=(U1(x),...,Up(x))

with components Uj(x) defined on Bj'
Then, with r;=(rj), the problem (1.3) is
Mu=r 3
and the implication (1.4) can be written as
. Mu ¢ Mv  implies u < v, (1.5)

where inequalities between vectors of functions are defined in a

natural way, namely, as holding component and pointwise.

A problem (1.3) satisfying (1.4) is often called of monotonic
type [3], [7], or inverse-monotonic [13]. An operator M with property
(1.5) is also said to be inverse-monotonic (more precisely: inverse-isotonic).
The reason for this notation is that (1.5) is equivalent to the following
statement. The inverse operator M-l exists and is monotonic (isotonic):

U<V implies MU < M7lv,

if U,V are in the range of M. Therefore, an equation Mu =1r with

inverse-monotonic operator M has at most one solution.

We will use the following notations? Derivatives with respect to a
variable x? are denoted by subscripts, for example, u -a u%/ax X .
If n=1, we will write u=ul. In this case, a

differential operator FY  of the type we consider is
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P lu) =Fu] () =Fj(x,u,ui,u (1,K,6=1,2c00,m) «  (1.6)

kl)

This equation is to be understood in an obvious wayt F:j [u] may
depend on all first and seccnd derivatives. In (1.6), the values
Uylypuy ,  MAY also be considered as independent variables of «
function F'j. For simplicity, it will always be assumed that this
function F‘j is defined for xe B‘1 and all values of the other

variables. Similar assumptions shall be made for the other examples

of this paper.

2. Application to Error Estimation

Suppose the given problem Mu=r has a solution u*¢R and the

implication (1.5) is true for wu, v¢R. Then, if v, weR satisfy
Mv {r { My,
one can conclude that
wut v,
Given an approximate solution ¢ with Jefect d[e¢] =-Mg+tr,
one can try to get such elements v,w in the form:

v=¢-Bz, wW=9+Pz, where ze¢R is suitably chosen and B denotes

a real number.

For such v,w, the statement above is equivalent to:

M(cp-Bz) -Mp< d[cp] i< M(cp+Bz\) - Mo (2.1)

implies
-Bz {u* - < Bz.
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More explicitly, the inequalities

Fj{@-sz] -Fj[cp] < -Fj[cp] e < FJ[¢+Bz] -FJ[¢] on Bj (j=15254.44p) (2.2)
lu*® - " | < sz on G (kF1,2y...,m) (2.3)

Example 1: For the example of Section 1, this implication takes

the following form:

BAZ+f(X,cp-BZ) -f(xycp) < A(p-f(x’w) < -BAZ+f(X,(p+BZ) -f(x,cp) on G,

(2.4)
'CP'S(XI)XZ)I S Bz(xl:xz) on T
imply
ut (5,30 -l %D | < pa(x,xd) ke (2.5)

Error estimations of the form (2.2), (2.3) are what we are
interested in here. It depends on the type of the problem how ¢ and
the error bounds cun be calculated. Usually, khe most difficult part is
to calculate an approximate solution ¢ with small defect. We realize
that in practical applications, it might not be the solution u* of the
differential equations which is of main interest, but other things, as
derivatives, certain linear functionals, etc. In many cases, however,
the solution is of interest; and in even other cases, bounds for the

solution may help to get other information which one wants to have.



3. Several Proofs

By different methods, several types of problems have been proved
to be inverse-monotonic. We sketch some of the typlcal proofs without
stating all necessary assumptions concerning differentiability, etc.
The proofs can be applied to more general problems. Some of the results
which we will mention do not exactly have the form (1.4) but involve

the < sign, also.

Elliptic boundary value problems: We will prove (1.2) under

different assumptions.

1) The implication (1.2) is true if on G:

f(xyu) < £f(x,v) for u v, (3.1)

Proof: Suppose w=v -u has a negative minimum at x=%e¢G.
Then Aw >0, and consequently, -Au+f(x,u)> -Av+ f(x,v) at

x=% in contradiction to the assumption in (1.2).
In the same way, one can prove that

-Au 4+ f(xu) < -Av+ £f(x,v) on G _
imply u v on G,
u v on T

if on Gt f(x,u) < f(x,v) for u < v.
Using the strong raximum principle one can show that

2) The implication (1.2) is true if on G

f(x,u) < £(x,v) for u v,



Proof (3], (7]t Let w and & be as before, and let KCG
be any neighborhood of & such that w(x) < 0 in K. Then, W
accepts its minimum at an inner point of K and satisfies Aw 30
on K. Therefore, according to the strong maxdmum principle for
elliptic equations, w(x) is constant. This is not possible

because w(§) <0, and w>0 on T.

In another proof [2], a contradiction is derived by multiplying
the first inequality in (1.2) by w, then integrating over a small

enough sphere with center § and applying Green's formula.

The statement (1.2) can be proved under even weaker assumptions.
For example, in case of a linear operator with f(x,u) =q(x)u-g(x)
variational methods have been used [1], [6]. The variational problem
which has -Aw +gq(x)w=r(x) as its Euler equation is shown to possess

a unique solution if on G

q(x) 2 —)\1 " 6’

where 6=const > 0 and X\, denotes the smallest elgenvalue of the

1
Dirichlet eigenvalue problem -Au=Xu. Then, it is proved that in
case r 2> 0 a function w which has negative values does not solve

the variational problem.

The last result can be applied to the nonlinear case by using the
mean value theorem of differential calculus, assuming that df/Qu exists.

3) The implication (1.2) is true if on G:

g—g(x,u)z-xlm. (3.2)



Another way of extending the simple result 1 1s by applying

the idea of the first proof to w=(v-u)/z instead of w=v-u,

where z(x) >0 on G. In case of a differentiable function f,

one then comes out with the condition
-0z 4 f‘u(x,u)z >0 on G

instead of (3.1). Assuming appropriate knowledge of the eigenfunction
corresponding to )‘l’ and choosing 2z close to such an eigenfunction,

one can get the condition (3.2) in this way, also.

Parabolic problems: In order to explain a typical proof for initial

value problems, we consider a problem for one dependent variable u

((3]041(8][9](10][12][16]) 4

L) The inequalities

1 2 1.1
uz'f(x ,X ,u’ul,ull) < v2-f(x )x )v’vl’vll) (303)

for O<x1<1, O<x23X;

udv for, x =0,1; ngng, (3.4)

together imply

v for 0<x <1, 0<x°<X,

if the function f is isotonic (increasing) with respect to its last

variable,

Prcofls Suppose that w=v-u > 0 for x2< 52, but w(El,Ez) =0



at a fixel point 5=(§1,C2). Then, wzg 0y w, = 0, Wiq 20

l

at x=§. These inequalities contradict (3.3) because [ is

is~tonic in u11 .

Hyperbolic Equations:  In hyperbolic equations, comparably few

results are known. In some papers [4 ], [ 5], [11], [15], identities
are used which can be derived by Green's formula, such as the very

simple one (D'Alembert's forrula) s

fful2dyldy2 = -g{u] + u(x) (3.5)
B
X
where
1 1 - : 1 1 H
glu] =-]5[u(xl,l -x) +u(l -x2,x2)] +§-f[ul+u2](y y 1 -y )dy”
1-x

and Bx consists of all y=(yl,y2) such that 1 -y2 & yl < xl,

1-x1<3r21x2.

5) The inegualities

1 + oo, %5,v) (3.6)

u, .+ o(x ,x2,u) v

12 2

for l-x<x <1, 0<x <1,

for x*=1-x, 0<x <1 (3.7

U, + u. <v, + v
1

together imply
, 2 1
udv for l-x"<x <1, 3<%

if the function f is antitonic with respect to its last variable.
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Proof: The inequalities (3.7) imply that glu] < g[v]. Therefore,

by integration of (3.6) and "sing the identity (3.5), it follcws that
1 2 1 do o2
u +fff(y ,y yu)dy dy2 <v +f5/;‘(yl,y2,v)dy dy” . (3.8)
B
X x

Suppose now, that w=v -u >0 1in B except x=F where w(g) = 0.

C,
Then, Wy < 0 and v, {0 at x=f. These inequalities contradict (3.8)

because f 1is antitonic in u.

Discussion:  While some proofs use cther means, in most of the
proofs given above, contradictions are derived by using conditions on
a function w and its derivatives at a certain point §. The
procedures differ for the different types of problems. For the boundary
value problem (see 1 and 2) w(§&) is minimal, while for the initial
value problems, the point § --in a certain sense--is the "first" point
where w(E) =0 (see 4 and 5). Because of this relation w(g) =0, for
the statement 4 no restrictions are required concerning the
dependence of the operator on 1, such as, for example, (3.1). (Of course,
this proof-technical difference has some deeper reason, which becomes
apparent by the formula (3.2) involving an eigenvalue.) The
proofs of 4 and 5 require some strong inequalities as (3.4), (3.7). Such
implications, involving the < -sign, usually can be proved easier and under
weaker assumptionsy and, in fact, they do not have the same consequences.
For example, the existence of M-l, i.e. the uniqueness of a solution does

not follow.
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The following section contains a unifying approach. For all
types of problems considered here, a weaker type of implication
involving the <-sign can be proved in the same way by using conditions
on w at a point § where w 1is minimal and w=0 (Assumption I,
The general type ¢f the problem, or the properties of a speclal problenm
arc then taken into account by the construction of a certain element =z
(Assumption II). Roughly spoken, in this way the assumptions are split

into "local" and "global" conditions.

4« A Unifying Approach

Many of the known results about different types of problems, and
new results also, can be gained in a unique way by applying an abstract

theorem on inverse-monotonic operators:

Theorem [13]« Suppose that the following assumptions are satisfied

I. For abritrary u, u eR,

u<du
imply u<€ U. (4.1)
Mu< Mu

II. For a given veR there exists zeR such that

z >0, Mv<{ Mv+rz) for X\ >0, (4.2)

Then, for all ueR,

Mu { Mv implies u < v. (4e3)

Remarks The theorem remains true if all inequalities, except

N > 0, are reversed,
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The notutions which occur in the theorem can be defined in an
abstract way. For our problem, we define an inequality ud v
between vectors of functions as component- and point-wise strict

inequalitiess
. k k
udd v iff u(x) <v(x) forall k and x,

for which these inequalities have a meaning. Similarly, Mu<Mv

is defined. Then the assumptions take the following forms

Assumption I: For u, ueR, the inequalities

u(x) ¢ T(x) (xeG; k=1,2,...,10), (44)
Flu)(x) < FlE(% (xeBy5 §=1,2000,p) (445)

together imply

a(%) < a0%) (x¢G; K=1,2,000,n) . (4.6)

Assumption IIs There exists 2z¢R such that

z(x) > 0 on G, F{v](%) < Plv+nz](x) (chJ., 351,25 eesps XD 0) (4.7)

The element 2z occurring in the error estimation (Section 2) can

often be used in Assumption II, and vice versa.

We will give an idea of the proof for the simple special case where
(1.3) consists of p=2 ordinary equations for n=2 unknown numbers
ul,uz. (One may consider these unknowns as constant functions defined

on some domain &G). Then, if a vector v is fixed, the vectors

u<{v(u<g v) constitute a closed (respectively open) quadrant.
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First, notice that z P 0 because of (4.2), (4.1). Let now
Mu { Mv, but not u < v. Then, the positiun of the "points"

u, liu, v+ Az, may be as in Figure 1. The rxistence of a point

u=v+ )\Oz such as in this figure contradicts Assumption I.

FIGURE 1

This proof shows that the theorem can be generalized in different
ways. For example, {4.1) need not be required for all u, ueR.
Moreover, one may consider a more general curve v()\) instead of

v+\z (see Figure 1).

5. Local Assumptions

The general idea of proving Assumption I is as follows. Suppose

(4.6) is not true. Then, for some k=kk : wk=ﬁk-uk has a minimum

wk(E) =0 at some §¢G. This fact yields some conditions on certain
k

f'irst and second order derivatives of w 0 at x=%. The set of these
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coniitions, together with the inequalities wk(x) > 0 (444), are
. 1 ucel tu derive a contradiction to one of the inequalities in

J
(4.5). For this, therc must exist some such that F O[u]

K0
contains derivatives of the component u O, only. Moreover, the
i

o

function F 0 mist satisfy some "monotonicity-condition" (M-condition).

We give some examnles where this proof can be carried through if
tne given M-conditions are satisfied. It 1s assumed that the occurring
functions possess appropriate differentiabllity properties. We will
not specify the set R of those functions in each case. The examples

can be generalized, in particular with respect to the boundary conditions.

Example 2: Generalization of Example 1, boundary value problem for

one unknown funection u:

Fl[u](x) = rl(x) for xe€G,

Ful(x) = r%(x) for xeT

with
Frlul(x) = Fx u, uy, u,) (Lykek =1, 2p000pm) (5.1)
Ful(x) = u. (5.2)
M-condition:
Fr(xpuyugsey ) > FOogu,uu, + ) (5.9)

for xeG, all u,u,,u , and any m X m-matrix

(wkz) B0

i.e. for any symmetric positive semi-definite matrix (wkz).
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Example 2us  An Imp.rtant special cuse Lf (5.1) is the quasi-
linear operator
e S
Flu] = -2‘ au(x,u,ui)u“+ c(x,u,ui)
kya=1
with a coefficient matri- <atisfying the M-cordition:
(akz(x,t;,ui)) > 0.

In xeG, and all u,u,.
i

For example, this c.ndition is satisfied for the equati.n

of minimal surfaces:

e 2 Y
Flu]l=-[1+4 (ul) ]ull 1205, - 1+ (112) ]u22 o
and, if (u1)2+ (u2) = & 02, for the equation

ﬁl — r 2 2 'f‘2 \ 2 . =
Frlul =-lc -(ul) ]u11+2J1u2u12- c -(1‘2) ]1.22 )

describing the two-dimensional steady, irrotational flow of & compressible
fluid.

Exemple 2: Initial-boundary value problem for one unknown functions

Fl[u](x) =r1(x) for xeGUI‘2, o)

2 2
Folul(x) =r~(x) for xely,
e E ! .
with F° as in (5.2) and a special case of (5.1):

Fl[u]=um-f(x,u,ui,uk£) (1 gk 3# =055293 sepm-1) 5 (545)

G shall be a cylinier of voints x, such that (xl,..., m-l) is

element of an open bounded domain 5, and 0O < " {X; T, 1is the set

2
( 1 m-l)e: m

of boundary points with (x,...,x G, x =X, and I‘1=I"-I'2.
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M-Condition: Condition (5.3) applied to (5.5).

For example, the equation of heat conduction

auA-(kll ), - (ku ) - (ku =0

1)1 ¥3*
with positive thermal properties a(x,u), k(x,u), and heat genere ‘on
f(x,u) can be written as (5.4) such that the M-condition is
satisfied.

Example 4¢ Semlilinear hyperbolic systems of first order in normal

form: 7
Fj[u](x) = - 1c:zrji(x)uj+fj(x,u) =0 for xeGUT,, (5:6)
1 J
Fm‘] ] &) =1 (x) -a‘](x) for xcl"m_.j =T - I'j

where I‘j denotes some part of T.

M-Condition:

u gvk with k # ]
for 3 j j (xeGUFj; j=1,2,...,n)
u" =v

ii) For each xe 1"j s the "directional derivative"

J I . .
du” =z ot (x)ud,
A

_i_s a derivative into the closed domain s

Example 4a (Wave Operator)s The differential equation
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V.. 4 f(xl,xz,v,vl,vz) )

12

can be transformed into a system (5.6)

L
Fl[u] =up tu, -ut-ul =,
Fz[u] = ug 4+ f(x;,xz,ul,u2,u3) =1 O

2y
F3[u] = uf + f(x},x‘;ul,uz,UB) =N,

The first part of the M-condition is satisfied iIf f 1s antitonic
(decreasing) with respect to the last three variables. For the usual
boundary-initial value problems, the second part i1s satisfied also. A
simple example i1s the characteristic initial value .roblem for the domain

04 xl,x2 <1 with ut given for X' =0 and for x° = O(FA), u?

3 given for X = ﬁ(ré). (The result 5 in

given for X = 0(r5), u
Section 3 can be obtained by applylng the abstract theorem tc the integral
operator occurring in (3.8)).

Other Examples: The examples given above can be generalized. Moreover,

it is often possible to transform a given problem such that Assumption I

becomes satisfied. We describe some of the involved ideas using examples.

1) Consider a problem (1.3) where, for xeG, the equations

Fl[u] = (u1 + uz)ui + ué = = rl(x)
b 5.7
Flu] = v -t = r¥(w), N

are given. These equations do not have the form necessary to derive a
contradiction to wl(E) =) at a point fe¢G, because Fl is not
antitonic with respect to u2. Therefore, introduce new variables Ul,U2

and replace (5.7) by the system
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Fll(u,rl = ulul S U2(ul)+ = uz(ul)' + u1 = u2 = rl(x),
1 1 1 2

Fr2u,U) = -FH,] = -rt(x),

F2u,0] = FAMu] = r2(x), Fou,u] = -FU] = -ri(x),

where 2f = |f| +f, 27 = |f] - f. For xeG, this system has

all necessary properties, and, for Ui = —ui, it is equivelent to
(5.7). As approximations, respectively bounds, for the new variables
Uk, one can use -@k, respectively -¢k + sz. Then, the correspond-
ing inequalities (2.2) consist of equivalent pairs, which do not
explicitly involve the positive part f+, or negative part f of any

function, but |f| instead,

2) If a system (1.3) does not have "normal form", i.e. if not all
equations contain derivatives of one variable only, one may get this

normal form by trausformation of the dependent variables.

Consider a quasi-linear system in matrix notation:
A(x,u)u1 +u,=0 on G, together with appropriate boundary conditions.

Suppose there exists a nonsingular matrix ®(x,u) and a nonsingular

diagonal matrix D(x,u) such that o1

equivalent to D\D-lu1 + $'1u2 = 0. One can introduce new dependent variables
1

-1
u; = yvy t e, @ Tu, = yv, + d, if the function y(x,u),

A® = D. Then, the given system is

vk such that ¢~
and the vectors ec(x,u), d(x,u) can be determined such that (vi)2==(v2)l.

Then, the transformed system D(*vi +c) + (vv2 + d) = 0 has normal form.

1

For example, use v=9® u if ¢ does not depend on u.
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In the case of the equations

21 12 1 _
uuy +u ul + u2 = 0,
czui + uluzui + ulug = 0 with 2= [c(ul)]2

which describe the one-dimensional (isentropic) flow of a compressiblec

fluid, a system in normal form can be gained in the indicated way for

p
the variables vl =F(ul) +u2, V2=-F(u*) +u2, where F(p) =/'c oc do.
0

6. Constructing z

Assumption II is not very restrictive, in the sense that something
"not very much weaker" mst be required. In fact, for linear problems,
Assumption II is necessary, in general. For, if a linear operator M
is inverse-monotonic, and if for some r » O the equation lMu=r has

a solution, then this solution u=z satisfies (4.2)

The element 2z can be constructed for certain large classes of

problems.,

Example 2: If the function F* in (5.1) 1s strictly isotonic with

respect to u, then =z =1 is appropriate. More complicated functions

2z yleld weaker restrictions on Fl. For example, the function
r.

-p(ro _t‘)
z=fte dt, has been used [13], where r. is the radius of
T

an open sphere K ©G and r denotes the Fuclidean distance of its

center from =x.
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Examples 3 and 4a: for initial value problems often very

simple functions 2z are satisfactory. In Example 3, Assumption II

.m
is satisfied with z=¢'* , I large enough, if f obeys a certain

one-sided Lipschitz-condition. In Example 4a, a similar condition

k eN( x1 + x2)

is sufficient if z = is used (k=1,2,3).

In properly exploiting the theorem one can alsc gain conditions
of more theoretical nature, like (3.2). Consider, for example, the
problem (1.1) with f=q(x)u - g(x), and assume that [ and q(x) are
sufficiently smooth. Then, for any such £ satisfying (3.2, and
s(x) 21, s(x) =1, the problem (1.1) has a solution 2. For example 2z =1
for q =1. Thus, for q = 1, the Assumption II is satisfied. But it
is also satisfied for any other f=qu satisfying (3.2), because
a(x) can be connected with q =1 by a curve

q(x,t) = tq(x) + (1-t) (0 <t <1). The corresponding z(x,t) depend

continuously on t, and 2z(x,0) > 0 on G. If 2z(x,1) >0 on G would
not be satisfied, then for some t¢(0,1)lt z2(x,t) > 0 on G, but not
z(%,t) > 0 on G. This contradicts Assumption I. Obviously, this is

a very speclal case of far more general results.

7. A _Program

The preceding sections have shown that, in principle, the method of
error estimation of Section 2 can be applied to many types of problems.
Of course, for a concrete problem, usually a lot of additional considera-

tlons are necessary to make the method work. To investigate the practical
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application, a program has been written for the problem (1.1). The
general idea is as fol ows. (For convenience, we use partly different
rotaticns than before. For example, we write (x,y) instead of

(xl,x2); and subscripts do no longer denote derivatives.)

StepD: Calculating Approximations by the Difference Kethod.

(This step is not needed for linear problems.)! The ordinary differerce
method is applied to calculate approximate values ﬁij at the net-points
(xi,yj)eG of a rectangular net. If, for example, the condition (3.2)
is satisfied and the meshwidthis not too large, the nonlinear difference

equations can be solved by the iterative procedure of Picard or l.ewton.

We have restricted ourselves to cases where the Picard procedure converges
(Ifu| <N -68), and we have solved the nonlinear systems by a combination of

Picard's procedure and the point-overrelaxation method.

Step A: Calculating an Approximation o(x,y). A development

@ = 9 tagp + ere + @ q with properly chosen functions ¢i(x,y) is
set up. For calculating the constants @ the defect
d1[¢] = L - £(x,¥,¢) 1is replaced in the net-points (xi,yj) by the

linear approximation
G [el = b6 - £(%,5,8) - £ (%,5,T) (-T) with ﬁ(xi,yj) = ﬁij .

In order to get "small" defects dl[m] on G, and dz[w]=:-m+-s on I, an

orthogonalization method is applied:

Yi(d el e), + 6 0], 8),=0  (k=1,2,...,m), (7.1)
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where Vi and ok are properly chosen functions, the constants i

and 6, are only introduced for computational convenience, and

k
G5 )l’ (, )2 denote discrete inner products. Forexample,
(u,v)1 = I wiju(xi,yj)v(xi,yj) with given weights, involving all net-
points in G. The linear system (1.7) for the @, 1is solved by an

elimination method.

Step Es Calculating an Error Bound. For a chosen function 2z, one

determines a constant BO such that
|dl[<P]| < BO{-Az + fu(x, ¥, ®)z} on G, |d2[¢]| < Byz onT.

Practically, this is done for points (x,y) in a finer net. Then, if
B, 1is small enough, the desired inequalities (2.4) hold for a
number B, somewhat larger than BO’ say B = 1.0183. This has to be

checked. If this is so, then the error estimation (2.5) holds.
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8. lumerical Examples

The program of Section 7 has been used to calculate app:o.dmations

and corresponding error bounds for the following problems:

1. -s2u=1 for |x|,|ly| <1,
Ul = -—la(cos nx + cos Wy) on the boundary.
Payl
2. -au=1 for |x|,|yl <1,
u = ) on the boundary.

3. -bu= e’ for Ix],ly] <1,

O on the boundary.

<
1l

be -tu= - for |x|,ly] <1,

ol
1

O on the boundary.

The problems 1 and 2 were mainly calculetec to check how the method
works, before starting the nonlinear problems 3 and 4. The general
program is constructed to handle more complicated problems. However, we
did not accomplisia to compute more examples during the available time.

In all of these problems we chose a square net with mesh width h = 0.04.

In Problem 1, we used the development

2 72 ,
¢ = gyt (1 -x°)(1 -y )(orlu1 $eoct amgm) (8.1)

with polynomials Wy having appropriate symmetry properties:
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iy x° + y2, x2y2,..., (8.2)
ani

9y = --lE(cos nX + cos My).
’ Pl

As functions UM there were used orthogonal polynomials

PO’ PZ(X) + PZ(Y)’ Pz(x)Pz(Y)"'- (803)

where Pi(x) is proportional to the ith Legendre polynomial. Finally
=1 8 =0 (k=1,2y400ym)} Vi g =1 (14,5=1,25.00.,m), (8.4)

and in Step E

z = 2 - (x2 + y2). (8.5)

In this way, we got the following error estimations for Problem 1.

For

2

m= 4t Ju(xy) - o(xy) | €0.093 (2 - %% -yd (Ixl,lyl <1)

where ¢(0,2) = 0.326 708;

2

m= 6 [u*(x,y) - o(xy) | <0.0064 (2 - x° - y3 (Ixl,lyl <1)

where (0,0) = 0.326 834;

2

n=9: |ur(xy) - o(xy)| €0.000270 (2 - x* - y3) (Ixl,ly] <1).
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In a first run we hai tried with the polynomials in (8.2) as

functions y,  instead of (8.3). But then, the linear systems which

determine the constants a, became i1ll-conditioned for m= 6 and

m = 9, and the corresponding approximations ¢ were less accurate

than the approxdmation for m = 4.

For Problem 2, we did not apply the approximation and estimation

procedure immediately, because au 1is discontinuous at the corners

of the domain. The singularities were removed by introducing a new

variable

=u + p,
where p(x,y) satisfics

op = 9D for all x,y, except at the corners,

op =1 at the corners.

The function p(x,y) consists of four summands of the type

n-llm(z2 log z), each of them belonging to one of the corners.
example, z =1+ x+ i(1 +y) for the corner (x,y) = (-1,-1).

explicitly,

p(x,y) = %(p1 + Pyt Pyt p))
with

pp =alxy), py=al-ysx, py=al-%-y), p, =aly,-x)
and

a(x,y) = (1 + 0(1 +y) log [(1 + 0%+ (1 + y)2]

+12+ 02 - (1 + 92 arctg 2L

(8.6)

™

ror

More
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‘he transformed Problem 2' then 1.

-av =2 for |x|,lyl <1,

v = p(x,y) at the boundary. (8.7)

The procedure in Section 7 was applied to this problem. We again used
a development (8.1) with w, asin (8.2), but
0
9y = E[H(X) + H(y) - H(D)]

with

H(x) = h(x) + h(-x)
and
h(x) = 2(1 + %) log [4+ (1 + %7

+ T4 - (1+ %7 arctg 3(1 + x) -

This function ?, satisfies the boundary condition (8.7).

Wwith functions y  as in (8.3), the quantities in (8.4), and 2z

in (8.5), we got the following error estimation for m = 4:

lu*(x,y) + p(x,y) - @(x,y) | <

[v*(x,y) - (%) |
<0.000 002 (2-x°-3% (Ixl, iyl <1
where
0l 0,0) = 1.177 227 9,
0.882 542 4,

p(0,0)

¢(0,0) -p(0,0) = 0.294 685 5.
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Of course, the error bound does not take into account the rounding
errors which occurred during the calculation of @(X,y) according

to (8.1).

For the linear Problems 1 and 2, we could also have used functlons
¢ Wwhich satisfy the differential equation instead of the boundary
cordition. (Then, = 8 =1 (k=1,2,...om)). DBut, this is not
possible for the nonlinear problems 3 and 4, and, as mentioned above,

the linear problems mainly served to check the procedure.

The Problem 3 also was transformed using (8.6) before applying

the approximation and estimation procedure. The transformed Problem 3' is:

e-p(x,y)ev for

=tV = le: vi <1,

p(x,y) on the boundary.

L

v

In Step A and Step E, we used the same quantities as in Problem 2',.

In this way, we got the following results for m = 6:

1V (x,5) -o(x3) | = [a*(x,5) + p(%,7) -o(x,y) | < 0.001 02(2 - x* - y)

for |x|’|}’| S 1,
where: ¢(0,0) = 1.278 072 3,

@(2,0) - p(2,0) = 0.395 529 9,

and the approximations ¥(0,0) for v*(0,0),

u(0,0) for u*(0,0), obtained by the difference method, are
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v(0,0) =1.277 974 7,
v(0,0) - p(0,0) = 0.395 432 3.

d(0,0)

In Problem 4 we proceeded similarly, except that now the transformation
vV=u-p
was used. The results for m = 6 were:

[v*(x,y) - @(x,y)) = Jur(x,y) - p(x,y) - @lx,y)| < 0.07038 (2 - X2 - y9)

where: ¢(0,0) = -1.127 658 9,
©(0,0) + p(0,0) = -0.245 116 5,

-1.127 576 2,

v(0,0)

u(0,0) = ¥(0,0) + p(0,0) = -0.245 033 8.
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